Chemical engineering courses

While its origins are in oil refining and petrochemical production, and the fundamentals of the subject have changed relatively little, chemical engineering is constantly evolving. It is constantly pioneering new and improved materials and related techniques which help advance scientific knowledge in fields such as nanotechnology, fuel cells, fabric development, mineral processing and bioengineering.
Some typical chemical engineering courses you may cover include fluid mechanics, mass and heat transfer, techniques for separation of materials, thermodynamics, plant design, process systems, process economics, process analysis and process operations.
Other courses could cover biochemical engineering, colloid and interface science, engineering management, environment, food engineering, food processes, fossil fuels, gas absorption and adsorption, liquid effluent treatment, membrane science, nanoscience, nuclear energy, petrochemicals, pharmaceutical process development, reaction engineering, reactor design, safety and hazard engineering, sustainable engineering and waste management.
Some of the most popular chemical engineering courses you may choose are explored below:

Chemical reaction engineering

Also called reaction engineering or reactor engineering, chemical reaction engineering deals with chemical reactors (vessels designed to contain chemical reactions) such as those found in industrial plants. Chemical reaction engineering is the management of industrial reactor/plant processes and conditions to ensure optimal reactor/plant operation. The term is frequently used specifically in relation to catalytic reaction systems where a homogenous or heterogeneous catalyst is present in the reactor. You’ll learn about multi-produce and multi-purpose plants, how to analyze reaction kinetics and mechanisms, how to study and optimize chemical reactions in order to define the best reactor design, how to construct models for reactor analysis and design and how to use laboratory data and physical parameters to solve problems and predict reactor performance. You’ll draw upon many topics within chemical engineering, including the others explored here.

Plant design

Plant design involves creating plans, specifications, and economic analyses for new industrial plants and/or plant modifications. You’ll gain an understanding of the fundamental basis of designing industrial plants, and learn how to use the design tools most commonly employed by engineers in industry. You’ll learn about the design criterions for process equipment such as pumps, heat exchangers and phase separators, and gain an understanding of plant economics and plant optimization using cost models. You’ll also learn about the safety, regulatory and economic concerns within plant design (such as during the choice of process, material and equipment).

Process engineering

The field of process engineering is the application of chemical engineering principles to optimize the design, operation and control of chemical processes. You’ll develop an understanding of the concepts and techniques involved in materials extraction and processing, the basic terminology used in the chemical, minerals and material industries, and the basic science involved in a range of unit operations such as: crystallization, distillation, gas absorption and adsorption, evaporation, filtration and drying. You’ll become familiar with the design and operation of a range of process engineering equipment and operations, learn about different fuel sources and energy consumption patterns and learn about safety, regulatory and economic concerns within plant design (for example regarding the choice of process, material and equipment).

Transport phenomena

The umbrella term “transport phenomena” encompasses all agents of physical change in the universe. It is a name given to describe a range of phenomena that frequently occur within industrial problems. It concerns the exchange of mass, energy and momentum between observed and studied systems. This includes topics such as fluid dynamics (momentum), heat transfer and mass transfer. You will gain a thorough understanding of the mathematics needed for describing transport phenomena at macroscopic, microscopic and molecular levels, and for drawing deep mathematical connections between them.

Process design

Specializing in process design means becoming an expert in the design of unit processes. The chemical equivalent of one unit operation, one unit process, is the individual physical step in a chemical engineering process (like crystallization, drying or evaporation), which is used to prepare elements during chemical processing in reactors. Unit processes and unit operations go hand in hand to constitute a process operation, involving the conversion of material by chemical (bio- or thermo-) means.
Considered central to chemical engineering and one of the most challenging fields within it, process design brings together all of the components within chemical engineering. You’ll learn how to create processes, design the equipment for a process, operate processes and improve processes in order to achieve the desired physical and/or chemical transformation of materials. As design usually starts at a conceptual level, you’ll also learn how to use specialist computer software for process simulation.